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Abstract 

 

One of the challenges in a distributed virtual environment stems from the 

requirement to simultaneously execute the simulations in real-time to support human 

interaction, in conjunction with maintaining a consistent view of the shared simulated 

environment.  Maintaining a consistent set of simulation state data in the presence of 

network latency is difficult if individual data items are updated frequently.  The principle 

application of Distributed Interactive Simulation (DIS)-based simulation environments 

has been in the domain of training where a consistent view or its correctness is often 

judged in subjective terms such as the simulation looking and feeling correct.  New 

application areas for these systems are emerging in the analysis and test domains.  For 

these domains, quantifying shared state consistency in terms of overall distributed 

application architecture is desirable. This research effort investigates and validates 

methods to calculate and measure the latency effects due to the multithreaded architecture 

of a real-time distributed simulation.  These latencies may significantly affect the 

consistency of the simulation.  An improved understanding is beneficial to the Air Force 

where real-time distributed simulations used for the purpose of analyzing the systems 

they simulate and the support of live test events.   
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ESTIMATING AND MEASURING APPLICATION LATENCY OF TYPICAL       
DISTRIBUTED INTERACTIVE SIMULATION (DIS) - BASED ARCHITECTURE 

 I.  Introduction 

General Issue 

Real-time distributed simulations (RTDS) are used by the Department of Defense 

(DoD) to test systems and train personnel.  One of the challenges with real-time 

distributed simulations is maintaining a tight consistency or small differences among all 

simulated views.  Consistency is a measure of the difference among all simulated views.  

Consistency in a shared environment is affected negatively by numerous factors such as 

network latency, computational hardware, message ordering, and software architecture.  

A poor consistency in a real-time distributed simulation can lead to inaccuracies and lead 

to a poor portrayal of the simulated world.  This chapter explores the problems associated 

with quantifying the consistency among real-time distributed simulations with a focus on 

latency due to software.  Characterizing and quantifying simulation state consistency will 

lead to a better comprehension and prospective design of real-time distributed 

simulations. 

 An improved understanding of consistency within a simulation is 

beneficial to the Air Force where real-time distributed simulations are used for the 

purpose of analyzing the systems they simulate and supporting live test events.  The U.S. 

DoD has used distributed simulations since the early 1990s as a cost-effective method for 

training its people in virtual simulations (Cavitt, Maly, & K.J, 1997).  Within these 

training environments, people can learn without the real-world limitations such as safety, 

costs, training areas, or personnel (Cavitt, Maly, & K.J, 1997).  In addition, simulations 
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allow testing scenarios that would not otherwise be possible such as flying an 

experimental aircraft or testing the flight of a new weapon. 

Problem Statement 

Users and designers of real-time distributed systems need to understand the 

effects that software architecture have on consistency.  When considering latency of the 

system, most research focuses on network latency exclusively.  Although network latency 

does affect the consistency of the simulation, it is only one aspect and other sources 

should be examined.  The architecture of the software may have significant impacts as 

well.  Therefore, this research studies the impacts that software architecture has on the 

consistency of RTDS. 

Interactive Simulations 

The simulations of interest are often referred to by many different names.  For 

example, Live-Virtual-Constructive simulations (), Distributed Virtual Environments 

(Zhou, Cai, Turner, & Zhao, 2003), networked Virtual Environment (Singhal & Zyda, 

1999), RTDS all convey a similar type of simulation that share common characteristics.  

Regardless of the term used to describe these simulations, they all have commonalities.  

First, they are all distributed simulations, meaning they execute on separate physical 

machines often located at different geographic locations.  This means that data must be 

shared across a network if the goal is to create a common shared virtual environment.  

Second, they are all real-time simulations that read, process and update state values with 

a specified amount of time.  Most real-time “continuous” simulations executed on digital 

computers update the state that represents the virtual environment in discrete time steps, 
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and these time steps must match a “wall clock” time or real world time.  Because of this, 

real-time simulations must meet timing deadlines.  In other words, the simulation must 

model the environment accurately at every discrete time step (Belanger, Venne, & 

Paquin, 2010) and perform this task in sync with the wall clock.  Last, the simulators 

must be networked and share a single view of the modeled environment.   

For a simulation to have a shared environment, it must have a shared sense of 

space, presence, and time (Singhal & Zyda, 1999), and it must do so by communicating 

state changes across a network.  There are several standards for sharing data across the 

network.  The IEEE Distributed Interactive Simulation (DIS) is one of the 

interoperability standards used as the basis for interconnecting individual real-time 

simulations.  DIS defines the architecture for communication so that various types of 

simulations may be linked (Hofer & Loper, 1995).  One advantage of DIS is that it allows 

interoperability so that systems built on different platforms, from different vendors, 

and/or from various services can all join in one simulation (Zalcman, 2004). 

DIS-based simulations share a number of common characteristics.  First, the 

individual simulations that compose the distributed simulation execute and operate 

autonomously and are responsible for maintaining the state of simulated entities-meaning 

there is no central server to control the entire simulation (Murray, 2010).  Each 

application maintains its own view or state of the modeled environment.  A state is “a 

complete description of a virtual entity at a single moment in time” (Churchill, Snowdon, 

& Munro, 2001).  In addition, the term object must be defined.  An entity or object is 

often used interchangeably, and represents an element of the synthetic environment that 

is created and controlled by a simulation application through the exchange of information 
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(Delaney, Ward, & McLoone, 2006).  In this way, every simulator has its own virtual 

world that tries to synchronize with every other participant’s virtual world.  This is 

possible only by exchanging state data with participants. 

Real-Time Distributed Simulation Consistency 

One important aspect of RTDS is consistency.  Consistency refers to the 

difference between all participants in RTDS.  To maintain high levels of synchronization 

or tight consistency there are tradeoffs.  To maintain a tight consistency among all 

participants, state data updates must occur often.  However, if the state of a simulation is 

broadcast to other simulations too often, the network can become flooded with traffic that 

might result in degraded performance.  If the simulation state is not broadcast often 

enough, the simulation might become poorly synchronized, resulting in errors.  An ideal 

RTDS would be tightly synchronized which results in few errors present in the 

distributed system.  This kind of synchronization is something real-time simulations 

strive to keep in an ideal system -- an absolute consistency.  However, it is rarely 

possible.  It takes time to transfer each participants view (state space) and for the 

receiving participants to process the state data and update their own environment.  For 

this reason, there has been some effort in the field to strengthen the synchronization in 

real-time applications.  These efforts focus on information exchange methods associated 

with algorithms (e.g. dead reckoning) that smooth the difference between the 

application’s internal state with that of outside states (Zalcman, 2004).  These methods 

help reduce network traffic by reducing the number of updates broadcast, while 

improving the consistency of views throughout the environment.  There is however a lack 
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of research in quantifying or characterizing the consistency of the real-time distributed 

simulations.  In other words, the approach has always been to improve the consistency 

without knowing or quantifying the consistency itself.  Furthermore, little research has 

explored the affect of application (i.e., simulation) architecture structure and its 

relationship to consistency measures.  

Requirements for consistency may vary with each application.  For some 

applications, the consistency may be relaxed in comparison to others.  For example, a 

simulation may execute software on a host computer that models the virtual environment 

for the purpose of training or experimentation (Murray, 2010).  In the training world, the 

consistency of a simulation is subjective, and the user is not directly concerned with the 

latency, but rather the "feel" of the simulation.  For example, a user may not see a 

noticeable difference in views even if significant network delay is introduced, even 

though the simulation contains errors and inaccuracies.  In fact, some argue that the 

absolute realism is not necessary for acceptable experiential uses of DIS  (Dewar, 

Bankes, Hodges, Lucas, Saunders-Newton, & Vye, 1996).  Instead, DIS needs only to 

give the users a good experience or proficiency in the training that they wish to receive 

from the simulation (Dewar, Bankes, Hodges, Lucas, Saunders-Newton, & Vye, 1996).  

In other words, if a user piloting an F-16 in real-time simulation releases a munition, the 

accuracy of the munition's impact during simulation is not as important as the user 

becoming proficient in the act-as the purpose for this simulation is for training.  Although 

this thinking may apply to some training applications, there are new applications 

emerging in the analysis and test domains where understanding errors present in the 
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system should be better understood.  For these domains, characterizing the shared state 

consistency is important.   

This research effort will give a better understanding of how the application 

architecture affects the consistency of RTDS.  By quantifying a consistency of a real-time 

simulation, designers can properly address architectural parameters so the simulation 

meets the application requirements.  The impact to the Air Force community could be 

significant as these systems are increasingly being used to support live test events and 

system analysis. 

Research Goals 

This research effort accomplishes several goals.  RTDS are typically designed 

with concurrent executing threads that are responsible for updating the virtual 

environment, sampling state space data, moving data onto and away from the network, 

and updating the model or virtual environment.  Typically these threads can be 

categorized as producers and/or consumers of the state data being exchanged.  The rates 

at which each of these threads run can influence the consistency of the shared state data.  

This research quantifies the effects that each of these four thread rates have on the 

consistency of the state data.  In addition, the results are expected to validate the research 

performed by Hodson (2009).  The following questions are answered: 

1.  What effect do the four thread rates have on the consistency of RTDS? 

2.  Are the thread rate effects linear? 

3.  How do the metrics total latency, state data age, export time, and export  error 

describe consistency? 
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Assumptions/Limitations 

This research effort acts under some assumptions and limitations.  The system to 

be tested is modeled with threads.  Each thread performs its function within a specified 

period of time.  The timers used have a resolution of 1 millisecond (ms); therefore, the 

period of each thread is only accurate to 1 ms, and this must be reflected in the data 

analysis.     

Methodology Preview 

To evaluate the software architecture, the essential aspects of a distributed virtual 

simulation are emulated by building a skeletal application to be executed on a real 

computer.  This program was written in C++ using the Qt software framework. The 

emulator models a single object with a fixed velocity that moves along a straight path.  

As the object moves, differences in position between simulations are measured. The 

emulation is multithreaded and each thread sets a timestamp on the state data allowing a 

direct measurement of its age as it moves through the system.  This experiment tests and 

analyzes four factors:  producer model thread rate, producer sample thread rate, 

consumer receiving thread rate, and consumer model thread rate.  To evaluate the 

interaction between all of the factors, a full factorial design is used.  There are four 

factors, each with 2 levels.  An Analysis of Variance (ANOVA) on each metric is 

performed to assess the difference in mean ages of the state data.  The data shows the 

effect that each thread rate has on the consistency of the state data.  In addition, the 

validity of this model is compared against the analytic model developed by Hodson 
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(2009), which characterizes the performance of distributed simulations in terms of 

temporal consistency. 

Summary 

In summary, dynamic RTDS are inherently inconsistent.  Because it takes time to 

communicate state data to all participants in a shared simulation, there will almost always 

be some inconsistency in a frequently changing dynamic environment.  There are a 

number of factors, which contribute to a lack of consistency between participants in 

RTDS.  This research effort will examine a representative software architecture which 

several adjustable factors and determine its affect on consistency measures.  This 

includes quantifying and modeling the thread rate effects on measurements of 

consistency for RTDS to better understand and improve shared state consistency. 

Chapter 2 examines the factors affecting consistency, and the related research 

efforts in characterizing the consistency of RTDS in detail.  Chapter 3 explains the use of 

an emulator to collect data on the metrics of consistency, and explains the methodology 

in detail.  Chapter 4 discusses the results obtained from an experimental design that uses 

the emulator to represent the essential attributes of a distributed simulation. Finally, 

Chapter 5 presents the conclusions from this research effort. 
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II.  Literature Review 

Chapter Overview 

This chapter discusses consistency in real-time distributed interactive simulations.  

With a focus on the real-time distributed simulations (RTDS) that are used by the 

Department of Defense (DoD) that operate and communicate using the Distributed 

Interactive Protocol (DIS).  The consistency of the shared state data for these simulations 

depends upon several factors, including network latency, intercommunication protocols, 

and software architecture.  In particular, many simulations are multi-threaded 

applications organized using the model-view-controller design pattern.  The thread rates 

of the software design play a significant role in determining the state data consistency and 

are the focus of this research.   Furthermore, this research builds upon the relevant work 

of Hodson (2009), which analyzes temporal consistency of a RTDS.  Finally, the 

experimental design and collection of data is previewed.  To collect data, a RTDS is 

emulated by constructing an application that models the thread interactions.  The 

emulator allows direct measurements of consistency.  The results of this experiment aid 

in quantifying and modeling the relationship and role that each thread plays with respect 

to different measurements of consistency of the simulation.   

Terminology 

The terminology associated with describing the different views and the 

propagation of data through a simulation are complex.  This section defines and expands 

upon terms used throughout this document. 
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• System - an object or collection of objects whose properties we wish to study 

(Fritzson, 2003). 

• Simulation - the imitation of the operation of a real-world process or system over 

time (Banks, Carson, B.Nelson, & Nicol, 2001).  This term is used to refer to a 

computer simulation in this document.  This term needs further clarification as it 

may refer to a single computer program running on an individual machine or it 

may refer to the collective sense of the term where a simulation constitutes 

multiple computer programs connected through a network. Simulation may be 

used interchangeably in these cases. 

• Model - a representation of the system; in this case the system is the software 

architecture of real-time distributed simulation.  

• Consistency - the difference between the models of all participating simulation 

programs. 

• Networked Virtual Environment (net-VE)  - a software system in which multiple 

users interact with each other in real-time (Singhal & Zyda, 1999).  Each user 

accesses his or her own workstation or console using it as an interface to the 

virtual environment (Singhal & Zyda, 1999). 

• Distributed Virtual Simulation (DVS) - a collection of independent computer 

simulations that appears to its users as a single coherent system (Tanenbaum, 

2007). 
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• Real-World Clock or Wall Clock - a clock in the real world and not within a 

simulation.  In other words, if the simulation starts at 3:00 PM CST and ends at 

3:05PM CST then the simulation was executed for five minutes according to a 

real-world clock.  Simulation clocks are based on the internal clock of the 

computer they run on.  The advancement of time within a simulation does not 

necessarily follow a real-world clock. 

• Real-Time Distributed Simulations (RTDS) - simulations that are connected over 

a network and meet real-time deadlines.  These simulations are referred to as 

“real-time” for two reasons.  First, the simulation advances in discrete time steps 

that match a real-world clock and external systems connected to the simulation 

operate as though they are connected to a real system (Roy E. Crosbie, 2007).  

Following a real-world clock allows the simulation to seem consistent across 

multiple computers and gives the illusion that all users share the same space and 

time. 

• Modeled Virtual Environment - a virtual world as modeled by the simulation.  

This term may refer to a represented environment or a single virtual environment.  

A single represented environment is executed on a workstation that is networked 

to other workstations with represented environments.  

• State Space - the sum of all variables that make up the modeled virtual 

environment in a computer simulation.  
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• Shared State Data - information exchanged between networked simulations, 

allowing each simulation to model the virtual environment.  This information 

typically contains more than just information of a single entity.  A simulation’s 

state data may contain the position of many entities, weather conditions, terrain 

data, and the time of day for example.  In this type of dynamic simulated 

environment, this information changes with time, and therefore, needs to be 

shared by every connected node (Singhal & Zyda, 1999).  Described another way 

state data contains snap shots of the modeled virtual environment from any one 

simulation.    

Shared View 

The main goal of a networked RTDS is to provide the user with a shared view of 

a virtual environment.  Ensuring that this view is consistent with every other view is one 

of the major challenges for software engineers.  Consistency is a concept often seen in 

video games which simulate a physical world where players see the same objects.  The 

requirement is referred to as WYSIWIS, or “What You See Is What I See” (Ravindran, 

Sabbir, & Ravindran, 2008).  If an object in the simulation does not match its position in 

another player’s simulation then there is a loss of player cohesiveness or what is called 

“consistency.”  The concept of “absolute consistency” is discussed later.  If all players 

see exactly the same copy of the game state at the same time, then the game is said to 

have absolute consistency (Ravindran, Sabbir, & Ravindran, 2008).  The same is true for 

any RTDS.  As this chapter discusses, consistency is affected by several different factors 

and is the primary focus of this research. 
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Defining Consistency 

Consistency the differences in state space from one modeled environment to the 

next.  As a user interacts with a simulation their virtual environment changes.  The 

changes must be reflected in all participating virtual environments.  This shared virtual 

environment can be viewed as a collection of producers and consumers.  For example, if 

a thread is dedicated to broadcasting local simulation state data to other participating 

simulations within the distributed system, this can be characterized as a sampling of local 

state space data.  From there, consumers of that state data will receive that data and 

update their own local state information.  Each simulation then uses their state space to 

model and draw 3D graphical views to present the virtual environment on a monitor or 

projection system.  The inherent problem with this situation is that by the time consumers 

receive new updates, the producer’s modeled environment may have already changed the 

value just communicated, which results in differences among the shared simulated 

environments (i.e., an inconsistency develops).   

In a dynamically changing simulated environment, state data will have always 

“aged” by the time it is consumed, where “aged” simply means time has passed since the 

data values have been updated.  Understanding how consistency affects the quality of the 

simulation, and what can be tolerated is associated with the simulations intended purpose 

(i.e., requirements).  How “old” can the data be and still be considered valid is an 

underlying question to be answered.  For much of the literature on this subject, to answer 

the question the age of the state data is examined, and a couple definitions for consistency 

are defined: absolute and temporal consistency.  For a moving entity (e) in a RTDS, 

𝑃𝑖𝑒(𝑡) represents the position of the entity, where t represents the wall-clock time, and i 
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represents the simulation site the object is at.  If  𝑃1𝑒(𝑡) =  𝑃2𝑒(𝑡) = ⋯𝑃𝑛𝑒(𝑡)  for n number 

of simulation sites then the application has absolute consistency (Zhou, et al., 2003).  

Temporal consistency is different from absolute consistency in that the data doesn’t have 

to be the same throughout the participating simulations, but they must be within a validity 

interval (𝜃𝑉𝐼) .  The definition for temporal consistency also refers to the “age” of the 

data.  For a shared data object θ, an application is temporally consistent if 𝜃𝑇𝑆 + 𝜃𝑉𝐼  ≥ 𝑡, 

where 𝜃𝑇𝑆 is the creation timestamp and 𝜃𝑉𝐼 is the validity interval (Hodson, 2009).   

Tradeoffs for Consistency 

It is possible to maintain absolute simulation consistenty, but the tradeoff is 

simulation responsiveness.  Sandeep et al. (1999) present the idea of Consistency-

Throughput Tradeoff.  This concept refers to the tradeoff between ensuring absolute 

consistency as opposed to allowing the dynamic shared state to change frequently 

(Singhal & Zyda, 1999).  The only way to ensure absolute consistency is to not allow the 

state to change until all connected users have the same updated and shared state.  In order 

to ensure this level of consistency, updates may take a long time.  These long updates 

may be problematic for a simulation modeling a system at a high frame rate.  For 

instance, if the network delay between two users is 150 milliseconds (ms), then to 

confirm that both users have the same shared state requires two confirmations across the 

network.  This confirmation will take at least 300ms, which for a fast moving entity is 

significant.  In fact, many real-time simulations require frame times in the order of 

milliseconds, and for some applications frame time rates are less than 10 𝜇𝑠.  Therefore, 

for a simulated environment to be consistent it must be modeled at a rate that meets the 
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application’s requirements.  For this reason, absolute consistency poses a problem for 

real-time distributed simulations attempting to model virtual environments at fast rates.  

On the other hand, if absolute consistency is relaxed, then the simulation is less accurate 

in representing the position of entities.  This is acceptable for some simulations.  For 

example, in a flight simulator it is more important to simulate a smooth motion rather 

than simulate the position accurately (Singhal & Zyda, 1999). Therefore, the tradeoff is 

that absolute consistency is not maintained, but the simulation states can change at a 

speed that more accurately models and matches a real world clock.  This tradeoff poses a 

problem for real-time distributed systems that wish to have both fast updates and a high 

degree of accuracy. 

Consistency Versus Accuracy 

Accuracy is related to consistency but the terms are not the same.  The accuracy 

of the simulation measures how realistic the simulation matches the real world system it 

models whereas consistency is the difference between simulation views.  In other words, 

a simulation may be grossly inaccurate but consistent with every other participating 

simulation.  The accuracy of a real-time simulation is based on the dynamic 

representation of the system (Belanger, et al., 2010).  As discussed earlier, there is a 

tradeoff for accuracy in a simulation that has a high rate of change.  Accuracy is also 

based on the amount of time that it takes to model the system (Belanger, et al., 2010).  

The difficulty is in producing and processing model information within a given discrete 

time step (Belanger, et al., 2010).  Therefore, if the simulation is designed to model the 

virtual environment every 10ms, then the computer must perform the following in less 
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than 10ms: read input and generate outputs, solve model equations, exchange results with 

other simulation nodes, and wait for the start of the next (Belanger, et al., 2010).  If these 

tasks are not met within time, inaccuracies may occur.      

Factors of Consistency 

Network Latency 

One way to keep a tight consistency among nodes is to frequently transmit 

updates.  However, there is another tradeoff when considering frequent state data 

updates.  First, more nodes means more broadcasting, which can flood the network.  

Depending on the physical characteristics of the network, this frequent communication 

may limit the number of connected nodes, unless the consistency requirements are 

relaxed.  Second, the more state data that is broadcasted, the more data that needs to be 

processed, and much of this data may be extraneous information (Singhal & Zyda, 1999).  

For example, if an entity broadcasts it position, but it is on the other side of an 

obstruction and cannot be seen, then much of this state data is not needed (Singhal & 

Zyda, 1999).  In addition, there is latency associated with transmitting state data updates 

to other nodes.    

Another significant factor to poor consistency within a simulation is network 

latency or lag (Delaney, Ward, & McLoone, 2006).  Network latency for the most part is 

unavoidable.  Furthermore, network latency is increased when simulators are dislocated.  

New technologies such as fiber optics have helped reduce network latency, but lag will 

always be associated with network communication.  Therefore, it is important to be able 

to characterize latency and determine an acceptable threshold. 
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When examining the latency of a network, one must examine three aspects: bit 

propagation, packet processing and packet propagation delays.  Large propagation delays 

relates to the physical speed of the transmission and cannot be avoided (Delaney, et al., 

2006).  Packet propagation delay refers to the “time required for all bits in a packet to be 

transmitted across the network from source to destination node considering only the inter-

node bandwidth” (Delaney, et al., 2006).  This delay can be reduced by increasing the 

network bandwidth (Delaney, et al., 2006).  Packet processing delay is the time 

associated with the processing of the bits of data as it leaves the source and arrives at the 

destination.  This delay is by reducing the quantity of data on the network.  Reducing the 

quantity of data is accomplished by improving routers (Delaney, et al., 2006).  For both 

the packet processing and propagation delays, reducing the number of state updates 

would most likely help, and is one way to improve network latency. 

Jitter is another area of concern when it comes to characterizing the latency of an  

RTDS.  Jitter is referred to as the unpredictable variation in latency with time (Delaney et 

al., 2006).  In fact, jitter has a greater impact on performance than does latency (Delaney 

et al., 2006).  It has been found that both performance and user strategy are affected by 

latency (Delaney et al., 2006).  Therefore, examining and characterizing the latency are 

important. 

Message Ordering 

Another source of poor consistency is due to message ordering.  Tolk (2012) 

explains why consistency suffers when messages are received out of order.  Either there 

is an external delay such as a network lag, or there is an internal latency that causes the 

messages to be received out of order.  Figure 1 shows an example of messages which are 
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received in the wrong order due to internal latency (Tolk, 2012).  The figure shows three 

icons each representing a networked simulator to include the Army, Air Force, and Navy.   

Imagine a scenario where an army tank is attacked by Navy artillery while an Air Force 

unmanned air vehicle (UAV) is observing.  The Navy simulator sends out its state data to 

the Army and Air Force simulators notifying them that it has fired on the Army’s tank.  

The Army simulator acknowledges and updates its environment, resulting in its tank 

being destroyed and sends this information out to both the Air Force and Navy.  Due to 

latency in the message passing in this scenario, the Air Force UAV may see the Army 

tank destroyed before it sees the Navy Artillery firing.  This kind of problem is known as 

a “time anomaly,” and is corrected by managing the order in which it receives messages. 

 

Figure 1:  Time Anomaly (Tolk, 2012). 
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State consistency is also dependent on interacting model resolutions.  Figure 2 

shows Tolk’s example of what is called “temporal inconsistency” (Tolk, 2012).  If two 

simulations are connected, and the simulation on the left models an entity in one-minute 

intervals, while the simulation on the right models the entity at 15-minute intervals, a 

temporal inconsistency may exist (Tolk, 2012).  The temporal inconsistency occurs 

because two truths exist, the entity as represented on the left, which is updated at a faster 

rate, and the entity on the right, which is updated at a much slower rate.  One plausible 

solution in this situation is to give control of this entity to one of the simulations so both 

the left and right see a consistent view.  However, this approach may result in a larger 

inconsistency (Tolk, 2012). 

 

Figure 2:  Temporal Inconsistency (Tolk, 2012). 

 

Software Architecture 

Another source of inconsistency is introduced by the architecture of the 

simulation software (Hodson, 2009).  Most real-time simulations are created as 

multithreaded processes.  That is, instead of producing, consuming, transmitting, and 

receiving state data sequentially, most software applications perform these processes 



 

20 

using threads to take advantage of multiple core processors.  Experience has shown that 

using a computer process with multiple threads to execute a task is better than a single 

sequential process (Bottazzi & Salati, 1991).  A variant of the model-view-controller 

(MVC) design pattern is typically used to create these types of multithreaded simulations 

(Hodson, 2009).  With this architecture, work is divided among the threads to draw 

graphics, model the environment and process network activity (Hodson, 2009).  State 

data is touched by each of these threads from the moment it is produced to the moment it 

is consumed. Therefore, each of these threads potentially adds latency and affects the 

consistency of the simulation.   

Relevant Research 

Abstract models help in understanding the effects that software architecture has 

on state space consistency.  Figure 3 shows an aggregate model for the software 

architecture used in Hodson’s analysis of state space consistency using a Petri net model 

(Hodson, 2009). 
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Figure 3:  Producer, Network, and Consumer Models by Hodson (Hodson, 2009). 
 

 

 Each thread has a particular task and the threads are divided among the producer 

and the consumer tasks of the simulation.  As one simulation produces state data and 

transmits this data through a network, another simulation acts as the consumer and 

processes the incoming state data.  In Hodson’s model (2009), the first thread or the 

model thread calculates and updates the environment local to the producer (i.e., updates 

the position of dynamic entities, etc).  Snaps shots of this environment are synonymous to 

state space—a stored state of all modeled environmental variables.  The next thread, the 

sampling thread, samples this state space and passes state data to other nodes (i.e., 
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simulation) through a network infrastructure.  These nodes act as consumers that contain 

a receiving thread to read the state data and update their own local state space. This is 

synonymous to receiving updates from all other nodes and then storing that information 

locally.  The consumer model thread then uses the local state space to update its own 

modeled environment.  Through this process, each node transmits and receives state data 

to create a shared virtual world in which all simulation instances or nodes view the same 

modeled environment. 

Measuring Consistency 

This research effort examines the effects that thread rates have on consistency.  

However, the term consistency can be associated with many different measures.  For 

example, one possible measurement of consistency is the difference between the 

positions (i.e., data values) of an object modeled in two simulations, known as export 

error.  Assuming this object is moving with constant velocity this may be a fair 

measurement of consistency in relation to thread rates.  However, if the object is not 

moving then latencies really do not affect the consistency (because nothing is changing); 

thus, this metric does not always relay a true picture of the effects of thread rates.  It is 

also complicated by the fact there are normally multiple objects modeled in simulations.  

To help characterize consistency to the fullest, this research effort examines four metrics 

that best describe consistency.  These measurements are total latency, state data age, 

export time, and export error.   

The system under test is a producer-consumer model that creates and consumes 

state data.  The component under test is the thread architecture.  The rates of the threads 

affect the consistency metrics.  Therefore, the thread rates will be varied while examining 
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the responses of the system.  The methodology of this research effort will use an 

aggregate of Hodson’s three models:  Producer Model, Network Model, and Consumer 

Model (Hodson, 2009).       

The System Under Test (SUT) includes the producer component and consumer 

component analogous to the producer and consumer models used by Hodson (2009).  

This system represents two networked simulations that are both producers and consumers 

of state data.  The simulation architecture itself is an important aspect of this system.  The 

architecture includes thread rates and state space of both the producer and consumer 

components.  The thread rates affect how the state data propagate throughout the system 

until it is processed by the consumer model thread into the consumer’s state space.  The 

component under test (CUT) for this research is the thread architecture component.  This 

research effort will evaluate the system using an emulator that allows direct 

measurements for each of the four metrics.  It is hypothesized that the characterization of 

the threads will match and build upon the work of Hodson (2009).  Models are created to 

predict the metrics of consistency.  The next chapter discusses this methodology in detail.   

Conclusion 

This chapter has examined the shared state consistency problem of real-time 

distributed simulations.  Due to network latency and the software architecture, there is 

potentially a difference in the shared state data.  This difference between producer and 

consumer state data represents the consistency between them.  Closely related research 

performed by Hodson (2009) used a Petri net model to simulate a consumer/producer 

system to characterize the age of the state data.  This research effort will use actual 
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threads to model and emulate a similar system and make direct measurements of the state 

data.  The expected result of this experiment are models showing the relationship and the 

effects of each thread rate.  The impact of this research is a better understanding of how 

application architecture affects the quality and/or consistency of the shared simulation 

state data.  The next chapter discusses in detail the method by which data will be 

collected and analyzed. 
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III.  Methodology 

Chapter Overview 

This chapter discusses the methods used to characterize the state data between 

real-time distributed simulations.  First, a brief background is provided to define and 

discuss the problem.  Second, the goals of this research effort and the objectives are 

presented.  Next, the system, its services, parameters, metrics, and workload are 

introduced.  Finally, a discussion of the evaluation technique, the experimental design, 

and the data analysis process is presented.   

Problem Statement 

One of the challenges and strategic goals with real-time distributed simulations is 

maintaining the consistency of the represented environments.  Real-time distributed 

simulations (RTDS) must pass state data in order to correctly maintain the same 

represented environment.  The state data used by each participating simulation provides a 

“view” of the represented environment.  State space inconsistencies are the measured 

differences between each participant’s view in a simulation.  Simulations may have 

inconsistencies because the data cannot be transferred between simulations 

instantaneously, thus resulting participating simulations potentially using different state 

data.  This research will examine the differences between these views.  The problem is 

broken into a simpler model of producer and consumer called the State Space 

Consistency Model.  This model is used to examine the differences of consistency 

between the consumer’s view and the producer’s view.  The purpose of this research is to 

characterize the consistency of the state space affected by the software architecture of the 
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simulation.  There are several metrics used to measure consistency.  This effort produces 

a model for each measurement of consistency and should follow and support the work 

performed by Hodson (2009). 

Approach 

Typically, the simulation is designed with a multithreaded architecture to allow 

the receiving, sending, and processing of state data to run concurrently.  Figure 4 shows 

an aggregate model for the software architecture, which is based on Hodson’s analysis of 

state space consistency using Petri net (Hodson, 2009).   

 

Figure 4:   Multithreaded Architecture. 
 

The state space consists of the variables that define the state of the modeled 

environment.  Depending on the environment, whether it is modeling an aircraft or a 

missile, the variables change over time.  For example, if this application were modeling 

an aircraft, the state space variables would likely represent the speed, altitude, and 

position of the aircraft.  Other environment defining variables may include, weather, 

temperature, and terrain.  The collection of all these variables define the state space of 
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this application.  Real-time simulations update their state as time progresses and matches 

time on a real-world clock. 

Figure 4 shows the producer and a consumer state space.  The producer model 

thread (T1) updates the producer state space; it updates the data associated with the 

systems it is simulating.  The broadcasting of data through a network to other simulations 

is represented as a sampling of state space (T2).  T2 transmits this state data over a 

network to a consumer.  The consumer then incorporates the producer’s shared state data.  

Finally, the consumer model thread (T4) updates the consumer state space based on the 

updated state.  It is at T4 that the state variables from the producer are consumed (i.e., 

used) in the consumer’s modeled environment. 

Since real-time applications act as both producers and consumers of state data, it 

is easy to imagine that this process is bidirectional between two simulations as both 

receive each other’s state data creating a shared view of a common modeled environment.  

In a networked system consisting of more than two simulations the same process takes 

place with a set of producers and consumers.  The consistency of the shared modeled 

environment is ultimately dependent on the difference between the producer and 

consumer modeled environments.  This consistency is more difficult to define and 

measure with multiple consumers and producers; thus, the analysis only considers a 

single producer and consumer.  Even with only one consumer and one producer, the 

consistency of the modeled environment can be difficult to directly measure.  One 

method for measuring the inconsistency involves examination of the differences of 

timestamps of state data from different points in the system.  Typically, this is referred to 

as “age” because it measures the time of the state data from one point to the next in the 
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system.  However, age is a vague term as it could apply to several different metrics.  In 

addition, just because the data has aged doesn’t mean there exists inconsistencies in terms 

of data value differences.  However, the system examined here is a dynamic system in 

which an entity is modeled with a constant rate of movement.  Therefore, any time 

difference or aging in state data equates to an inconsistency in state data.  There are 

several ways to define consistency, which are discussed in the performance metrics 

section. 

System Boundaries 

The System Under Test (SUT) includes the producer component and consumer 

component, analogous to the producer and consumer models described earlier.  The SUT 

system represents two networked simulations described as one producer and one 

consumer.  The simulation architecture itself is an important aspect in the SUT.  The 

architecture includes thread rates and state space of both the producer and consumer 

components.  The thread rates affect how frequently variables are updated and how data 

propagates through the system until the update occurs in the consumer’s state space.  The 

Component Under Test (CUT) is a single component within the SUT that will be varied.  

For this research the CUT is the thread architecture component as shown in Figure 5. 
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Figure 5:  Real-Time Distributed Simulation System. 
 

System Services 

The service the SUT provides is a distributed interactive virtual environment.  

State data is used to create the simulation’s model environment.  Thus, every view or 

simulator connected should have a shared version of this model environment.  The 

success of the service is determined by the application.  If the application is for training, 

the consistency is relaxed allowing the environment to be responsive enough that the user 

does not notice inconsistencies within the virtual environment.  However, for test and 

evaluation purposes, it is essential that the environment and consistency are high enough 

that the simulation models a real-world system to meet the objects of the experiment.  

The resulting state space’s consistency is dependent upon the components within the 

SUT.   
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Workload 

The workload for the system is associated with the amount of state data that is 

produced.  The rate at which the model is updated by T1 and the sampling rate of T2 

influence the workload.  In addition, a higher node density and a higher number of nodes 

connected in the system results in more network communication, increasing the amount 

of data each node must process.  The size and broadcast rate of state data also increases 

the workload of the system.  The additional workload directly affects the level of 

consistency among every shared environment of each connected consumer/producer.  

Conversely, with fewer nodes, fewer data is processed by the system.  In a typical real-

world application of this system, the workload is application specific and widely varies.   

Performance Metrics 

There are many measures that can be used to define consistency, this research 

effort uses total latency, state data age, and export time shown in Figure 6.  There is a 

fourth and separate metric that measures the difference in state data values called export 

error.  Export error is measured by comparing the position of an object in the producer 

view versus the consumer view.  For this particular experiment, export error is influenced 

by the rate of change associated with a single moving entity (i.e., object).  The faster an 

object moves, the greater the export error.  In addition, export error equals the export time 

multiplied by the velocity of the moving object.  

  The measurements are shown in Figure 6.  The colored dots in the figure 

represent timestamps produced as each thread touches the state data.  These timestamps 

act as a means to find several of the performance metrics.  Note that in Figure 6, as 
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drawn, there is a symmetric pattern for all the timestamps.  This is rarely the case, but 

helps clearly describe the metrics in this context. 

 

Figure 6:  Performance Metrics 
 

The following metrics are used to evaluate the performance of the distributed real-

time emulation. 

• Total latency (ts3-ts2) - the first measure is total latency of the state data.  The 

difference in time from the point where state data is sampled at T2 (ts2) to the 

time it is received by the consumer at T3 (ts3) is defined as the total latency.  

Essentially, this is the time it takes to sample the producer’s state data and 

transmit it across the network to the consumer (ts3-ts2), which then stores the 

data.   
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• State Data age (ts4-ts1) – the amount of time it takes state data to propagate 

through all four threads and how often the data is updated.  This is from the time 

state data is updated at T1 (ts1), to the time it is consumed and used by T4 (ts4). 

• Export time - neither total latency nor state data age account for the direct 

differences between producer and consumer state data.  For this metric, the 

creation time of the state data used presently in the consumer and producer is 

compared.  Figure 6 graphically shows this metric as ts1 subtracted from ts1', 

where ts1 is the creation timestamp of the state data currently used by T6, and ts1' 

is the creation timestamp of the state data currently used by T1.   

• Export error - in addition to comparing timestamps of state data, it is possible to 

compare the values of state data variables between producer and consumer. The 

difference in one variable in a real-time simulation may not be a complete 

measure of consistency, because it is only one piece or small subset of variables.  

However, for this experiment, the emulator models a single entity and thus the 

object and its movement is the entire state space.  Therefore, the difference in 

position of the object between producer and consumer is a good indication of the 

consistency.  Therefore, the difference in an object’s position between producer 

and consumer is another measure of consistency, and is defined as the export 

error.  This metric is recorded for every update received by T4.   
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Parameters 

The parameters discussed below affect the performance of the real-time simulated 

environment. 

• Model Thread Rate (T1) - the rate (hertz) at which the producer node updates its 

local state space by thread one. 

• Sample Thread Rate (T2) - the rate (hertz) at which the producer’s state space is 

sampled and broadcast into the network by thread two. 

• Receiving Thread Rate (T3) - the rate (hertz) at which the consumer node receives 

data from the network and stores it in the consumer’s state space by thread three. 

• Model Thread Rate (T4) - the rate (hertz) at which the consumer node samples its 

state space by thread four. 

• Thread Offsets - the random time offsets between executing threads, which 

captures the asynchronous dynamics of multi-threaded applications.  The offset 

time (ms) between threads affects the performance metrics.  The offset times are a 

modulus of each thread rate and are a result of initial startup dynamics associated 

with real multi-threaded applications. 

Factors 

The following are the factors used in this research and each factors' corresponding 

levels.  A summary of each factor level is found in Table 1. 
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• Producer Model Thread Rate (T1)  

• Small – 50 Hz 

• Large – 100 Hz 

• Producer Sample Thread Rate (T2) 

• Small – 5 Hz 

• Large – 20 Hz 

• Network Latency - a measureable unit of time delay experienced over a network.  

In a real geographically distributed simulation, network latency plays a significant 

role.  However, for this experiment network latency is not a factor, and assumed 

to be negligible or near zero.  In fact, for the emulator created, the data is placed 

on the network by the producer and then immediately received by the consumer.   

• Thread Delay - a thread delay is the time added before the start of a thread to 

generate a relative thread offset between itself and the thread started before it.  A 

thread delay is not a direct factor in this experiment, but is related to the thread 

rate.  To properly emulate the initial conditions a real-time distributed simulation 

it is necessary to apply relative offsets between each thread on startup based on 

the respective thread rate.  The offsets are accomplished by adding a random 

delay before the start of T2, T3, and T4.  The delay for each thread is equal to a 

random number in milliseconds modulus the associated thread period (e.g., for a 

10 ms thread period, the thread delay can be a random value ranging from 1 to 10 

ms).  
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• Thread Offset – the thread offset is the relative time between two threads and is 

not a factor in this experiment but results from thread delays.  The thread delays 

are not necessarily equal to the relative thread offsets.  This is because the threads 

are cyclic and thus the thread offsets are equal to the thread delay modulus the 

previously started thread’s rate (e.g. for a thread delay of 48 ms for T2, where T1 

has a period of 20 ms and T2 has a period of 50 ms, the first relative offset 

between T1 and T2 is 8 ms).  Furthermore, thread offsets may vary with time.  

The difference between thread delays and thread offsets are shown in Figure 7.  

Figure 7 shows a thread delay of 48ms is added before the start of T2 relative to 

T1.  Because T1 executes every 20 ms, the first relative thread offset between T1 

and T2 is 8 ms.  Notice that this thread offset varies with time.  Since the next T2 

execution is at 98 ms, the next relative offset between T1 and T2 is 18 ms. 

• Receiving Model Thread Rate (T3)  

• Small – 5 Hz 

• Large – 20 Hz 

• Consumer Model Thread Rate (T4)   

• Small – 50 Hz 

• Large – 100 Hz 
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Figure 7:  Relative Offsets. 
 

Evaluation Technique 

To evaluate the system, the SUT was emulated by a software application to 

represent the essential architectural characteristics of a real-time distributed simulation.  

The emulator was built using C++ application based on the Qt framework.  As most real-

time distributed simulations use a multithread architecture, the emulator uses this same 

architecture and models the producer and consumer components as shown in Figure 7.  In 

this experiment, the emulator models a single point object, which moves along a line at a 

fixed velocity in 2-D space.  The path of the object uses the following physics equation 

for movement: 𝑥 = 𝑣𝑡 + 𝑥𝑜, where x is the new position of the object, v is the velocity, t 
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is the time, and xo is the initial position.  Thread 1 (T1) is responsible for calculating and 

updating the object’s position.  Thread 2 (T2) samples the state space and transmits the 

position information to the consumer.  The state data is then sent over the network and 

received by T3, which receives and stores the state data.  The state data then moves to the 

final stage where T4 consumes or uses this data.  There is difficulty in measuring the 

differences in timestamps between producer and consumer, because in a real-world 

simulations, each are executed on two physically separated machines, each with their 

own local clock.  The local clocks, typically, cannot be perfectly synchronized, thus 

introducing error.  To eliminate this obstacle, the emulator simulates the entire system-

both producer and consumer-using one application, on a single machine, which enables 

the use of a single common time reference – this resolves a fundamental problem in 

measuring state differences without introducing the complexities of different time 

references.  In addition, by using an emulator on a single machine, a shared memory 

block can be used to make comparisons (e.g., compare the position of the object as 

modeled by the producer and consumer at the same point in time).   

Previous research by Hodson, looked at modeling the system using a Petri net 

model and analyzing the age of the state data from the creation and consumption from 

producer to consumer (Hodson, 2009).  This research examined the direct 

experimentation of a real-time emulator with additional code added to record time stamps 

that allowed direct measurements in the differences of these timestamps.  The resulting 

data was analyzed and a model was developed to estimate the performance of the system 

in regards to expected consistency, given thread factors.  The results were compared and 
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validated using the analytic model from Hodson’s work (Hodson, 2009).  The trends 

were predicted to reveal the same general behavior of the system.  

Experimental Design 

Obtaining Measurements of Consistency 

Figure 7 is an example of a producer/consumer network model and demonstrates 

three of the measurements of consistency.  The example depicts the modeling of a simple 

object moving along a straight path with a constant velocity.  The figure shows  the state 

data consisting of the following state variables:  position (x), initial/last position (xo), 

velocity (v), acceleration (a), timestamp 1 (ts1), timestamp 2 (ts2), timestamp 3 (ts3), and 

timestamp 4, (ts4).  In Step 1, the producer model thread, T1, updates the producer’s 

model using the equation for motion.  The object starts with an initial position of zero 

meters, a velocity of one meters/second and time equal to zero seconds.  The state data 

variables are then updated at a regular frequency.   
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Figure 8:  Multithreaded State Space Model Example. 
 

 

Step 2 begins with T2 sampling the state data from the producer state space.  T2 

does not manipulate the data in any way and the only addition is T2’s own timestamp.  

T2 then transmits the new data across the network to the consumer, which takes place in 

Step 3.  The consumer receiving thread, T3, receives the transmitted state data in Step 4, 

adds T3’s own timestamp to the state data, and then updates the consumer state space.  

Finally, in Step 5, the consumer model thread, T4, samples the state space, and adds its 

own timestamp.  T4 then uses the current state data.  The consumer model then shows the 

position of the object to be at 0m with a velocity of 1 m/s.  The consumer model can be 

thought of as a second real-time distributed application; modeling the object in the 
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producer model.  Therefore, the modeled environment is of a simple object moving in a 

straight path that is shared by both the producer and consumer nodes. 

Once the object modeled by the producer is represented in the consumer, an 

inconsistency in data between the models results from the time lapsed from when data 

was updated to when it is available for use.  The total latency is found by subtracting ts2 

from ts3, which equals 30 ms for this example.  In other words, it took 30 ms to 

transfer/deliver the state data to the consumer.  The export time is found by subtracting 

ts1 from ts4, which equals 70ms.   

Measuring the time differences of state data is just one aspect of consistency.  The 

difference between state variables in both producer and consumer views also is a measure 

of consistency.  A difference in state data time does not mean the simulation has poor 

consistency.  However, a difference in state data time means there is a potential that the 

state variables have changed.  For example, if the object is not moving in the simulation 

then absolute consistency could be obtained even if there were significant delays in 

transmitting state data from producer to consumer.  Therefore, the consistency depends 

also on the rate of movement of the objects being simulated.  Following the example 

above, the data now used by the consumer indicates a position of 0 m.  This is evident 

because it took in this example 70 ms for the state data to propagate from T1 to T4.  

Therefore, state data used to create the consumer model is 70 ms old.  In addition, the 

position of the object has changed from the viewpoint of the producer, depending on the 

velocity of the object simulated.  For example, if the velocity of the simulated object is 1 

m/s and T1 updates the producer model every 10 ms, then after 70 ms the position of the 

object in the producer is 0.07 m while in the consumer it is 0 m.  This error in the object’s 
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position is known as export error.  All of these descriptors of state data - total latency, 

state data age, export time, and export error - represent metrics of consistency between 

the producer and consumer.  Furthermore, the rate at which each thread updates 

contributes to all these measures of consistency.  It is noteworthy to mention that the 

export error is dependent upon the movement of the object to include velocity and 

acceleration.  For example, if the object had no velocity and was simply stationary, then 

the position would be the same in both the producer and consumer models; thus, they 

having an absolute consistency according to that measurement.  If the object had a high 

velocity, with slow running thread rates, then the export error would be significant; thus, 

the consistency in this situation is often referred to as a loose coupling between producer 

and consumer. 

 Full Factorial Design 

To evaluate the interaction between all the factors, a full factorial design is used.  

There are four factors, each with 2 levels as shown in Table 1. 

 
Table 1:  Factor Levels. 

 

Factor T1 Rate T2 Rate T3 Rate T4 Rate 

Level 1 50 Hz 5 Hz 5 Hz 50 Hz 

Level 2 100 Hz 20 Hz 20 Hz 100 Hz 

 

A full factorial design requires 24 = 16 configurations.  In addition, each run of 

the emulator will collect 100 data points.  In other words, 100 datum packets will be 

propagate from T1 to T4.  The averages for each of the metrics will be recorded.  The 
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emulator will be run by a script directing the emulator to shut down and restart in order to 

create new offset times and mitigate any unknown factors due to initial conditions.  The 

script runs the emulator 1,000 times for each configuration, where a configuration is a set 

thread rate of T1, T2, T3, and T4.  This means, for a 24 full factorial experiment, there 

will be 16 thread rate configurations.  An average for each measure over the 1,000 runs at 

each configuration is recorded.  Sufficient statistical basis for analysis is expected to be 

achieved with no more than five replications at 90% confidence.  This results in 100,000 

data points for each configuration, or 1,600,000 data points for each replication.  Each 

iteration runs from the point where the first node produces the state data to the point 

where the second node consumes the data, and then repeating this process for 100 datum 

packets.  Each producer/consumer node is modeled using C++ code and Qt framework 

running on Windows 7.  Both an Intel Quad-Core 9550 and an Intel Six-Core i7-3930K 

processor were used. 

Analysis 

The data analysis supports the research goals to quantify the consistency affected 

by the architecture of a real-time distributed simulation.  This consistency of the system 

is defined by difference of state data between producer and consumer.  The timestamp 

difference of the state data is related to this potential difference.  To assess the difference 

in mean timestamp differences of the state data, an Analysis of Variance (ANOVA) for 

each experiment is performed.  It is presumed the thread rates have a significant role in 

determining the state consistency.  In addition, the validity of this model is compared 

against the analytic model used by Hodson (Hodson, 2009).  
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Summary 

Real-time simulations need to be accurate for use in emerging tests and analysis 

domains.  Accuracy requires the simulated shared environment to be consistent.  What is 

the effect that thread rates play in affecting consistency of a real-time distributed 

simulation?  This goal of this research effort is to answer this question by emulating a 

real-time distributed simulation and collecting the data associated with the consistency of 

the state data as the data moves from the producing application to the consuming 

application.  The experimental results from this research are expected to validate 

Hodson’s (2009) analytic work on state space consistency.  In addition, the models 

produced here are expected to be linear.   

This chapter defined the methodology used in this research to evaluate and 

quantify the latency of state data due to the software architecture of a real-time 

distributed simulation.  The system under test includes the producer, consumer, and a 

network.  The service of this system is consistent state data.  The metrics to measure the 

system include mean delay of the state data, throughput, and state data error.  This 

experiment emulates a real-time distributed simulation and models the architecture of the 

system to analyze the effect thread rates have on the consistency of the state data.  

Finally, a full factorial experimental design is implemented and a method of analysis is 

provided.  



 

44 

IV. Analysis and Results 

Chapter Overview 

This chapter presents the results of the full factorial design using an emulator of a 

real-time distributed simulation (RTDS).  This chapter also describes the data collecting 

process from the use of the emulator.  After the data is collected, it is analyzed to 

determine how the thread rates affect the recorded metrics.  This work includes the 

analysis of variance (ANOVA) results showing the significance of each thread rate, 

depicted several linear models.  Given that four metrics were used to measure 

consistency, four linear models were developed.  Thread rate significance varies among 

each metric, but overall it is evident that certain thread rates do significantly affect the 

responses.  Furthermore, the results complement the research by Hodson (2009).  Finally, 

results from this experiment aid in the understanding of consistency in RTDS used for 

testing and analysis purposes. 

Process of Collecting Emulator Results 

Overview of Emulator 

The purpose of the emulator is to model a simple RTDS system.  The emulator 

was created in C++ code and uses the Qt framework.  Specifically, the emulator models 

four threads—producer model thread (T1), producer sampling thread (T2), consumer 

receiving thread (T3) and consumer model thread (T4).  The emulator models a single 

point object moving along a straight path with a velocity of 1 m/s.  Each thread executes 

at a specified rate and offset, with the exception of T1, which has no offset.  As each 



 

45 

thread becomes active it performs its designated function and state data moves through 

the system.  Threads are started sequentially in the emulator with a random offset delay 

between each thread, which represents the asynchronous startup dynamics of multi-

threaded applications.  The four thread rates are used as factors, in 16 unique 

configurations, to constitute a 24 full factorial design.  For each of the 16 configurations, 

1000 runs were executed.  Each run of the emulator collected 100 values for each metric 

of consistency: export time (ms), total latency (ms), state data age (ms), and export error 

(m).  Finally, this process was replicated five times to ensure accurate representation of 

the system.   

Experiment Configurations 

Each run of the emulator captures a single configuration with fixed random delays 

between each thread.  For each run, 100 observances are collected and averaged.    

Ideally, a single emulator run for each configuration would suffice; however, initial 

conditions and possibly other unknowns, vary the output.  In addition, relative thread 

offsets, which are dependent on thread rates and delays, also vary the response 

significantly.  Patterns in metric values are seen due to this variability and they depend on 

the metric, the thread configuration, and relative thread offsets.  Figure 9 shows the 

variability of state data age within a run, where the state data age is at a minimum when 

T4 receives an update of state data.  The state data age values increase until the next 

update.  The thread rates and offsets determine the length of time between updates.  In the 

example shown in Figure 9, the state data age increases through ten observances from 48 

ms to 228 ms and then repeats this pattern.   
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For each run, the emulator stops and restarts with new random thread offsets.  

Metric values recorded between runs vary due to the latency added by these varying 

thread offsets even for the same thread rate configurations.  The larger relative offset 

between threads adds more latency; thus, runs with larger relative thread offsets have 

greater times for metrics.  The differences of a second emulator run are shown in Figure 

10.  The averages of the state data age values in Figure 10 are 117 ms compared to 138 

ms in Figure 9.   Due to this variability, many runs of a single thread rate configuration 

are executed.  For this experiment, 1,000 runs per configuration were performed resulting 

in 1,000 averaged values per metric for each thread configuration.   

 

 

Figure 9:  Run 1 Variability (State Data Age). 
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Figure 10:  Run 2 Variability (State Data Age). 
 

Replications 

A replication is a set of 16 configuration responses for each of the four metrics.  

These values are calculated from the average of the 1,000-recorded runs.  For this thesis 

effort, five replications were performed to satisfy a 95 percent confidence level in the 

results.  In addition, this experiment uses a significance level of 0.5.  The calculated 

results for each metric over the entire experiment are captured in Table 2.  The standard 

deviation between replications responses were about the same as the thread timing error 

of 1 ms. 

 

 



 

48 

Consistency Metric Results 

Total Latency  

Total latency is measured, from the time T2 samples state data, to the time T3 

receives and stores the most recent state data.  Once T2 transmits the data over the 

network it reaches a queue.  T3 uses the most recent data stored on this queue.  Once T3 

has received data off the network queue, it does not receive data until a new update 

arrives from T2.  This metric indicates the time it takes to move data new data from 

producer to consumer and is related to consistency of the system.  The longer it takes to 

move state data from the producer to consumer the more inconsistent they potentially 

might be.  Total latency, therefore, is a function of the thread architecture and network 

latency.  However, for this experiment, network latency is negligible and close to 0 ms.  

Table 2:  Experiment Responses (Averages of Five Replications). 
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Figure 11 shows an example of an emulator response for total latency with a thread rate 

configuration of 50/5/5/50 Hz. 

The variability of this metric is due to latency added by thread offsets between 

runs.  In other words, within a single run, this metric is the same value.  Once the 

emulator is restarted with new thread offsets and another run begins, a new value is 

observed, but it is the same value for all 100 observances.  It is important to note that T3 

receives only the most recent state data from the network queue.  Therefore, total latency 

does not take into account “old” state data, and records only the time new state data 

propagates from T2 to T3.  In other words, this metric will not increase if T3 checks the 

network again before an update has been received.   

   

 

Figure 11:  Total Latency Given Equal T2 & T3 Rates. 
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T1 rates have no effect on total latency because the measurement starts from the 

point T2 samples state data.  The rate at which T1 updates this data has no impact on total 

latency.  Similarly, T4 also has no effect since the end of this total latency measurement 

ends with T3 storing the data received from the network.  Therefore, the rate at which T4 

uses this stored data for calculations, etc, has no relationship to total latency.  This leaves 

T2 and T3 factors.  It is the relative offset between T2 and T3 that determines the overall 

latency or “freshness” of the delivered data plus any network latency.  For this 

experiment network latency is practically zero.  Therefore, total latency is dependent 

upon both thread rates.  For this configuration in which T2 and T3 have the same rate 

(200 ms), total latency may vary anywhere from 0 to 200 ms (Figure 11).  This is because 

the thread offsets associated with a 200ms period are from 0 to 200 ms.  If the thread 

rates were increased, then the offsets are reduced and smaller total latency times result.  

For example, Figure 12 shows the impact of increasing the rate of T2.  If T2 is reduced to 

50 ms then the relative thread offset between T2 and T3 then can be anywhere from 0 to 

50 ms for this configuration.  The same reasoning applies if T2 and T3 rates are swapped.    
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 When this is applied to the general case for all thread configurations, it is known 

that the lowest thread rate will have the largest influence on the result.  This is because 

the threads are cyclic.  Therefore, the fastest thread rate will determine the values.  For 

example, if either of the threads has a 50 ms period, while the other is greater than 50 ms, 

then the relative offset between the threads will be values ranging from 0 to 50 ms.  

Therefore, the total latency will range from 0 to 50 ms.  A general equation that describes 

the total latency based on thread rates and network latency is shown in equation 1.  Since 

the equation is the average of responses, a factor of 1/2 is used.  For example, if the 

smaller rate of T2 or T3 is 50 ms, then the average total latency would be 25 ms. 

 

Figure 12:  Total Latency With Faster T2 Rate. 
 

Average Total 
Latency : 𝑇𝐿 =  

1
2

{𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑜𝑓 𝑇2 𝑜𝑟 𝑇3} + 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
Equation 1 

(1) 
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 To prove the total latency model correct, the output data is compared.  As an 

example if the thread configuration of 20/200/200/20 ms, then the expected average total 

latency is 100 ms because the range of values vary from 1 to 200 ms.  Likewise, for a 

thread configuration of 20/50/200/20 the total latency should be 25 ms.  This is 

confirmed with the values presented in Table 2. 

 Average Total Latency indicates that both threads T2 and T3 play an equally 

significant role in determining how fast the most updated state data is delivered from 

producer to consumer.  This is directly associated with the consistency of a simulation 

and should give insight to metrics discussed later in this paper.  

 

State Data Age 

State data age is a measure of consistency that indicates the time that has elapsed 

between the data the consumer is using and the time associated the current value as 

maintained by the producer.  This metric is depicted in Figure 13 with a 20/200/200/20 

ms thread period configuration.  When state data is updated by T1, the data is “stamped” 

with the current time (i.e., timestamp) by the executing thread as part of the emulator.  

This data propagates through the system until it is used by T4, which then marks it with 

timestamp 4 (ts4).  The difference between ts1 and ts4 is known as state data age.  The 

state data age  is based on how long it takes the data to propagate through the entire 

system and how often state data is used by T4.  If no new update is used by T4 then the 

state data age gets larger.  In this sense, this metric determines the “age” of the data.   
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The state data age varies within a run because this metric accounts for updates.  In 

Figure 13, every dotted red line marks state data age measurement.  Within a single run, 

this measurement grows until T4 receives new data.  Because the thread rates of T4 to T3 

are in a ratio of 1
10

, T4 will use the same state data 10 times before updated state data 

arrives.  Therefore, state data age will increase by the value of T4’s period 10 times.  

After T4 is updated the pattern will start again.  Figure 13 captures the output of an 

emulator run, with the state data age increasing from 28 ms to 208 ms for every 10 

observances.  An average of 118 ms for this metric is then recorded to the cumulative 

output file. 

The state data age also varies between runs due to random thread offsets set at the 

beginning of each run.    A higher thread offset does necessarily add to state data age 

because the threads are cyclic.  Instead, the relative offsets between  

From this example it may appear that T4 may be impacting the average state data 

age, but it does not.  For instance, if the period of the T4 rate were reduced by half, the 

average state data age for the same cycle of observances is about the same.  In other 

words and averaging effect occurs, which negates the impact of the T4 rate.  The 

influential factors in this example are T2 and T3, which not only help propagate the data 

through the system from producer to consumer, but also heavily impact the rate at which 

updates reach T4.  These observances also apply to the general case for any thread 

configuration.  The equation that describes the average state data age is shown below in 

equation.  It is expected that 𝛽4 and the intercept, I, will be approximately zero. 
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General State Data 
Age Model: 

𝑆𝐴 =  𝐼 + 𝛽1(𝑇1) + 𝛽2(𝑇2) +  𝛽3(𝑇3) + 𝛽4(𝑇4) 

 

Equation 2 (2) 

 

An example of a single configuration run is shown in Figure 13 below.  An entire 

replication records 1,000 of  these runs for each of the 16 configurations.  In addition, 

five replications of this experiment were performed.  The average responses for all five 

replications are shown in Table 3.  The largest standard deviation between all five 

replications for any of the configurations is 1.05 ms.  An analysis of variance (ANOVA) 

was performed on the state data age responses (Table 4).  The ANOVA indicates that in 

addition to T2 and T3 being significant, T1 also impacts state data age.  In addition, a full 

linear model was created (Table 5), which includes all factors and interactions.  Finally, 

with a significance level of 0.05, the t-test on coefficients in the model indicates that T1, 

T2 and T3 are significant, while other factors are not. 
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Figure 13:  State Data Age Measurement. 
 
 
 
 

Table 3:  State Data Age.   
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Table 4:  State Data Age ANOVA. 

 

 
 

Table 5:  State Data Age, Linear Model (Full). 
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 Using just the significant factors a new model was created.  This model is shown 

in Table 6 below. 

     Table 6:  State Data Age, Linear Model (New). 

Factor Estimate Std. Error t-value Pr(>|t|) 
(Intercept) 0.1731 0.2757 0.6280 0.5320 
T1 0.4803 0.0140 34.3600 <2e-16 
T2 0.4995 0.0009 535.9810 <2e-16 
T3 0.4990 0.0009 535.5100 <2e-16 

 

 

Equation 3 shows the linear model for state data age.  Analysis of this model 

shows that it is linear and there are no effects from the interactions of the threads.  

Therefore, each thread contributes a linear effect to the state data age.  The adjusted R-

squared for this model 0.9999 indicating an excellent linear model fit.  In addition, R’s 

global validation of regression assumptions indicates that skewness, kurtosis, link 

function, and heteroscedasticity assumptions are met by this model indicating a good 

linear fit.  Figure 14 shows some of the model analysis plots.  The Normal Probability 

plot indicates a good linear model within the 1 and -1 theoretical quintiles.  In addition, 

the Histogram plot in Figure 14 indicates that the model has a near normal curve.  A 

slight sinusoidal pattern emerges on the Plot of the Standardized Residuals, but this is to 

be expected because the influential factors, T2 and T3, have varying rates from fast to 

slow in the experiment. 

State Data Age Model: 𝑆𝐴 =  0.48(𝑇1) + 0.50(𝑇2) +  0.50(𝑇3) Equation 3 (3) 
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The new model shows that threads rates T2, and T3 highly affect the state data 

age about equally.  In addition, the model implies that T4 has no effect on the average 

state data age.  Although T1 through the ANOVA is less significant than T2 and T3 it 

still impacts the state data age.  Finally, the intercept for the new model is found to be 

negligible and well below the ± 1 ms error of the C++ timers and subsequently removed 

from the final model (Equation 3).  This final model gives a great characterization of the 

export time and how the state data “ages” as it updated and used in the system.  

Export Time 

Export time measures the difference between the creation timestamp of data used 

at the consumer and of data being updated at the producer.  Export time is an important 

metric for consistency because it gives a direct comparison of times of state data between 

 

Figure 14:  Model Analysis Plots (State Data Age). 
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the producer and consumer.  The model is expected to be linear and is shown in equation 

4 below.  Based on the analysis of state data age, it is expected that 𝛽4 and the intercept 

will be a negligible in this model.  Furthermore, this model is expected to be linear.   

 

General Export 
Time Model: 

𝐸𝑇 =  𝐼 + 𝛽1(𝑇1) + 𝛽2(𝑇2) +  𝛽3(𝑇3) + 𝛽4(𝑇4) 

 

Equation 4 (4) 

  

Five replications were performed during this experiment and the results are shown in 

Table 7.  In addition, ANOVA was performed, and these results are shown in Table 8.  

The ANOVA results shown in Table 8 indicate that only T2 and T3 are significant 

factors.  From the results of the ANOVA, a full model was created using all thread 

factors and interactions.   

Table 7:  Export Time Responses. 
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Table 8:  Export Time, ANOVA. 

 

 

The coefficients of the full model are shown in Table 9.  Because only T2 and T3 

were significant, a new model was created using only T2 and T3 rates while all other 

factors were dropped.  To ensure the new model is sufficient, a drop-in-deviance test was 

performed.  A drop-in-deviance test compares the full model against the new model to 

see if factors may be dropped without any significant loss to the model. This test 

indicated that all other factors may indeed be removed from the model.   
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Table 9:  Export Time, Linear Model (Full). 

 

 

     The new export time model is created by dropping all factors but T2 and T3.  This 

final model is shown in Equation 5 below.   

 

Analysis of the export time model shows that it is linear and there are no 

significant effects from the interactions of the threads.  Therefore, each thread contributes 

a linear effect to the state data age.  The adjusted R-squared for this model is close to 1, 

indicating an excellent linear model fit.  In addition, R’s global validation of regression 

assumptions indicates that skewness, kurtosis, link function, and heteroscedasticity 

assumptions are met by this model.  Figure 15 shows some of the model analysis plots.  

The Normal Probability plot indicates a good linear model within the 1 and -1 theoretical 

Export Time Model: 𝐸𝑇 =  0.499(𝑇2) +  0.499(𝑇3) Equation 5 (5) 
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quintiles.  In addition, the Histogram plot in Figure 15 indicates that the model has close 

to a normal curve.  A slight sinusoidal pattern emerges on the Plot of the Standardized 

Residuals, but this is to be expected because the influential factors, T2 and T3, vary in a 

cyclic manner over time. 

 

 

Figure 15:  Model Analysis Plots (Export Time). 
 

In this model, T1 does not have a significant effect on the responses.  T1 is not 

influential because regardless of its rate, its contribution averages out to be the same.  

Figure 16 shows an example of a slower T1 rate.  The export time measurements are 

represented by the red arrows in the lower half of the graph. 
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Figure 16:  Export Time Measurement: Slower T1 Rate. 
 

 

If T1 runs at a slower period of 60 ms then the export times will be 60, 120,  180, 

and 40 ms each repeated three times for the 12 observances by the consumer model 

thread.  These responses average out to 100 ms.  Now if T1 is run at a faster period of 20 

ms as shown in Figure 17, then the export times for 12 observances the export times will 

be 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 40, and 60 ms.  As with the slower T1 

rate, the average of all of these responses is 100 ms.  This example shows that over a 

number of observances over the same cycle the averages of the export times will be very 

close for any rate of T1.  This averaging effect is depicted in Figure 18.   
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Figure 17:   Export Time Measurement: Faster T1 Rate. 
 

 

Figure 18:  Export Time Measurement: T1 Averaging Effect. 
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What impacts the export times more significantly is the movement of state data 

from producer to consumer and this is dependent on T2 and T3.   Therefore an increase in 

either the T2 or T3 rates results in lower export times.  Figure 19 shows an example of 

this, with the blue asterisks above the T4 timestamps indicating updates of state data.  If 

the T2 period is increased to from 200ms (as it was in the last example) to 50ms, the 

updates reach T4 faster and the consistency time measurements between T1 timestamps 

become more frequent; thus, the export times are less than if T2 had a longer period of 

200 ms.  In summary, faster T2 rates (smaller periods) result in smaller export times.  The 

same explanation applies to T3—faster rates result in smaller export times. 

  

 

Figure 19:  Export Time: T2 Effects. 
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Export Error 

Export error is the measured difference of an object’s position at the producer and 

consumer.  In this experiment, the velocity is a constant 1 m/s and the response is 

measured in meters.  Since the export error is the difference in position from the 

producer versus the consumer, it is closely related to export time.  The export error is 

equal to the export time converted to seconds (factor of 0.001) and multiplied by a 

velocity of 1 m/s.  Since export times are recorded in milliseconds, the export errors 

gathered from the experiment should differ from export times by a factor of 0.001.   

The resulting export errors were recorded from the same five emulator 

replications as the export times.  The recorded responses in Table 10 show that export 

errors differ from export times by a factor of 0.001.  As expected, the full model for 

export error shown in Table 11 are almost the same as the export time full model results.  

Likewise, the final linear model differs by a factor of 0.001 as shown in Equation 6.  

Note, that export errors are highly dependent on velocity and acceleration.  For example, 

if the velocity were 100m/s then the linear model shown in equation 4 must be multiplied 

by a factor of 100.  This research effort did not use modified parameters, but doing so in 

future research, may return interesting results.     

Export Error Model: 𝐸𝐸 =  0.0005000(𝑇2) +  0.0004996(𝑇3) Equation 6 (6) 
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Table 10:  Export Error Responses. 

 

 

Table 11:  Export Error, Linear Model (Full). 
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Comparison to Related Work 

The experiment conducted in this research effort is an extension to the work 

performed by Hodson (2009).  In Hodson’s work, a Petri Net was used to simulate thread 

architecture and interactions - this experiment obtained direct measurements by 

emulating the thread architecture of an RTDS.  Because of the relationship to Hodson's 

work, it was expected to see related outcomes, and the models developed in both 

experiments should support the same characterization of the system.  The metrics used in 

this research differ from Hodson’s.  Since Hodson does not use thread three as a factor as 

data was instantaneously moved from the network into the consumer state space 

(simulating a blocked network thread), the model is similar to model used here but with 

T4 eliminated as a factor and a network delay added.  Therefore, a new metric is 

measured using only the first three threads (ts3-ts1).  This metric closely matches the 

metric used by Hodson (2009).  In addition, Hodson adds a network latency factor, which 

by his own analysis is linear and additive to the state data ages.  The ts3-ts1 values are 

then adjusted by adding the corresponding network delays.  These adjusted values match 

very closely within ±1 ms of Hodson’s state data ages (2009).  The comparison of these 

results are shown in Table 12.   
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Table 12:  Comparison of Hodson's Results (Hodson, 2009). 

  

Hodson also concluded that T4 had no significance in determining the age of the 

state data (2009).  The results found here concur that in all four metrics, T4 had no 

significant effect on the response.  Furthermore, similar to Hodson (Hodson, 2009), the 

data recorded here indicates that T1, T2, and T3 are significant in determining the state 

data ages.  What is interesting is that the export time is dependent only upon T2 and T3 

rates.  Thus, when considering consistency of data between producer and consumer only 

the rate of movement of data between them has a significant effect rather than the rate at 

which the models are updated. 

Summary 

The responses from all four metrics were used to create linear models and 

perform ANOVA to determine the effect each thread had on the results.  The data and 

results have shown that the most significant threads in a Real-Time Distributed System 
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are T1, T2, and T3.  T4 had very little significance in all of the models presented and no 

significance in determining export time.  In addition, the results, in comparison with 

results obtained from Hodson’s (2009) work, verify expected similarities.  
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V.  Conclusions and Recommendations 

Chapter Overview 

The purpose of this chapter is to present the conclusions of this research and 

explore recommendations for future research.  Chapter one presented several research 

questions as to the effects of thread rates on consistency.  These questions will be 

answered in this chapter and the answers will have an impact for future real-time 

distributed simulations (RTDS).      

Conclusions of Research 

The results of this research confirm that thread rates significantly affect the 

consistency of a real-time distributed simulation.  For this research, four metrics were 

used to quantify consistency-export time, total latency, state data age, and export error.  

Among all of these metric responses, the results suggests that the consumer modeling 

thread (T4) has little effect.  The rate at which the consumer models the virtual 

environment has little effect on consistency.  What is more important, is that state data 

updates be available in a timely manner.  For total latency, which is simply examining the 

time it takes the producer to transmit data to the consumer, T2 and T3 are the only 

significant factors.  For state data age T1, T2, and T3 all are significant.  Finally, for 

export time and export error the producer sampling thread (T2) and the consumer 

receiving thread (T3) have a significant effect on consistency because they are 

responsible for moving data from producer to consumer.  This intuitively makes sense 

since consistency is more dependent on the rates at which updates are received at the 

consumer rather than the rate at which the producer and consumer model their respective 
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environments.  Therefore, T2 and T3 factors are significant because they heavily 

influence the rate at which data is transferred between producer and consumer and 

therefore influence their rate of updates at T4.  Conversely, T1 and T4 model the 

environments of the producer and consumer respectively, but they have almost no affect 

on the export times and errors whether they update their models at slower or faster rate.  

In other words, they may update the models slowly, but as long as the state data from the 

producer is updated at the consumer at a fast rate, the simulation is consistent.    

The overall results indicate that T2 and T3 are significant in keeping a strong 

consistency in the simulation.  However, the consumer and producer modeling rates are 

less important.  If these thread rates are slow then consistency of the models will be 

loose.  If T2 and T3 threads rates are high, the state data is transferred more quickly and 

the consistency is high between producer and consumer.  In addition, the rate of change 

of the entities simulated contribute to the consistency.  For higher object velocities, 

higher export errors must be expected.  Matching faster thread rates (T2, and T3) will 

help to improve this error, but there are limits and the speeds of these threads cannot be 

instantaneous.  Thus, thread rates can be adjusted to help meet the requirements of the 

simulation.  Furthermore, the models for each metric are linear, and support conclusions 

made by Hodson (2009).  The data suggests that consistency depends on three factors—

the rate at which entities in the producer model are moving, the rate of T2 and the rate of 

T3.  Conversely, the rate at which the consumer model is updated has little effect.    

The impact of this research is significant as software architecture significantly 

affects consistency – maybe more so than network latency.  This research allows users to 

better understand, quantify and even estimate the effects of thread rates on consistency.  
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In addition, software should be designed with thread rates in mind to meet the goals of 

the simulation.  Most users are aware of network latencies and know that such latencies 

can add 100 ms.  However, the thread architecture with virtually no network latency may 

add up to on average about 200 ms.  This is significant and should be accounted for in the 

testing and analysis.  Finally, knowing average latencies of the software architecture plus 

network latency creates a baseline that can be established for the consistency of the 

simulation. 

Recommendations for Future Research 

There are several recommendations for future research.  First, the emulator 

designed for this research was run using a single application.  Future research would look 

to separate the emulator into two applications on a single machine to better represent a 

RTDS.  Although, this would allow the emulator to still share the local system clock to 

make measurements, this would add complexity in timing of capturing the data as well as 

reading shared memory from each application.   

Second, further research should also investigate network latency as an additional 

factor.  Together, the architecture latency and the network latency should make up a more 

complete picture of the overall consistency of an RTDS.  Constant network latencies 

should simply be additive, but introducing more complex transient network latencies 

would help characterize consistency under such conditions.    An emulator measuring 

both architecture and network latency would provide a better representation of the 

system. 
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Examining more complex movements of multiple objects within the system might 

also provide some insight into consistency of RTDS.  This research would tackle the 

question of defining consistency based on several differences within the system moving 

at different rates.  This type of research could be complimented by examining dead 

reckoning algorithms, which seek to improve and reduce the communication between 

RTDS.  By using an emulator that measures differences between applications, algorithms 

could be check for their effectiveness directly. 

Finally, the applications could be separated to run on two machines.  The 

emulator on the two applications could be adapted to send a system level ping from one 

computer to the next and then back again.  Using synchronized clocks and recording 

timestamps, the time could be measured for the round trip that state data makes.  This 

research would help give better insight to a system with two physically separated 

applications, which would better represent an RTDS system. 

Summary 

RTDS are used in a variety of applications-from training to test and analysis.  In 

the latter case, it is important to have a strong consistency among all participants, or at 

least an understanding of it.  Knowing the latency introduced by the simulation is 

important to understand and predict.  By using an emulator to take direct measurements 

of a system similar to a RTDS, models have been created to help characterize the 

consistency.  These models help characterize the system and validate previous research 

conclusions.  This results here have only explored a few research paths dealing with 

consistency, and future research is needed.  The impact that this kind of research has on 
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the Air Force and the RTDS community is significant and will help shape future 

simulations.  

 



 

76 

Appendix A 

Appendix A Overview 

The purpose of this section is to describe the emulator code used in this research 

effort to capture consistency metrics.  The emulator models a simple real-time distributed 

simulation (RTDS) system by implementing four threads—producer model thread (T1), 

producer sampling thread (T2), consumer receiving thread (T3) and consumer model 

thread(T4).  The emulator is able to adjust each thread rate in order to affect the response.  

In addition to each threat rate, offset delays are given to the emulator.  The emulator 

allows direct measurement of the time at which data moves through the system.  A 

description and UML diagrams are provided aid to explain the workings of the emulator 

code.   

General Overview of Inputs and Outputs of the system 

The emulator is given a set of parameters in which to run its test.  For a single run, 

an emulator is given all four thread rates, thread offsets, number of data points to collect, 

reset data parameter, and a filename to save the data.  This single run of the emulator 

starts a manager thread that starts each thread sequentially with the specified offset for 

threads two, three, and four.  The thread offsets were initially calculated by the emulator 

but it was discovered the C++ rand() function did not accurately generate random 

numbers.  For this reason, random delays were calculated outside the program.  For this 

experiment 100 observances for export time, export error, and state data age are 

recorded before terminating the program.  For total latency the observances must be 

recorded by T3, while all other metrics may be recorded by T4.  These results are then 

written to a single configuration output file.  This file contains header information such as 
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the specified thread and offset rates, and statistics on the metrics.  Each observance 

contains timestamps marked by each thread.  As the emulator finishes, it writes the 

averages of all metrics to a cumulative output file.  For each of the sixteen configurations 

1,000 runs are executed producing 1,000 averaged values for each metric.  Figure 20 

depicts the emulator inputs and outputs.   

 

  

 

Figure 20:  Emulator Inputs and Outputs 
 

 

Thread Architecture 

The Qt framework simplifies the work of multithreading by using what are called 

Q-threads.  Figure 22 shows a UML diagram describing the manager object and its 

associated thread objects.  The manager’s readargs() function is first called to store all 
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the rate and delay parameters given to the emulator.  Then the manager’s start() function 

creates each thread and each associated process that will run.  In order for the threads and 

the manager to communicate, Qt slots and signals are used as shown in Figure 21.  In Qt, 

Q-threads and their associated processes are separate objects.  The manager object moves 

these processes under each thread during run time and then calls the Q-thread object’s 

start() function.  Qt signals and slots are used to link each thread and its process.  When a 

thread’s process is complete it emits the  finished() signal which is connected to the 

corresponding thread’s quit() and deletelater() slot.  Thus, the manager effectively is able 

to start and stop each thread.  In order to control thread rates and delays. the Windows 

timeGetTime() function is used.  This function retrieves the elapsed time since Windows 

was started.  An initial start time is captured at the beginning of execution and then 

compared to the current retrievals of the system time.  By this method an elapsed time is 

calculated thereby allowing threads to run at specified rates and introducing delays 

between thread start times.  The Qt framework does offer Q-timers, but it was discovered 

that they are much less accurate (several milliseconds).  In addition The windows 

timeGetTime() was found to be accurate within one millisecond.   

Data Management 

Thread one (T1) models a simple object moving in a straight path.  The velocity is 

set to 1m/s and its initial position is zero meters.  T1 calculates the new position of the 

this object according to its thread rate.  If T1 has a rate of 50 Hz then every 20 ms it will 

recalculate the position of the object.  It stores the position of the modeled object in a 

mydata object along with a timestamp, ts1.  Thread 2 (T2) then samples the data from 

T1’s mydata object.  It reads all the variables and stores its own timestamp (ts2) in the 
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data object.  It then transmits this via UDP on the local network.  Thread 3 (T3) reads the 

local network port for this data.  It then stores the received data into the consumer’s 

mydata object along with its own timestamp (ts3).  Thread 4 (T4) then samples the 

mydata object and stores its own timestamp (ts4).  The emulator then appends all 

received data into a running QString variable called totaldata.  When enough 

observances are recorded, the process will quit and emit a signal to the thread manager 

object to save the data.  The thread manager then gather all the data from the thread 

process, and write this to file.  In addition, it will save metric averages to a cumulative 

output file.  Finally, the program terminates.  

Summary 

The key to this experiment was having an emulator that could directly measure 

the time between each thread in the system.  The emulator was created using C++ in a Qt 

framework.  Many of the Qt libraries helped to make the program simpler such as 

QThreads.  Overall, the emulator performed its function and the data recorded was used 

to characterize the system.  
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Figure 21:  Signals & Slots, Connecting Threads and Processes 

 



 

81 

   

 

Figure 22:  UML of Thread Manager and Thread Processes 
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